Mechanoafferent neuron with an inexcitable somatic region: consequences for the regulation of spike propagation and afferent transmission.

نویسندگان

  • Colin G Evans
  • Bjoern Ch Ludwar
  • Elizabeth C Cropper
چکیده

In the Aplysia mechanoafferent B21, afferent transmission is in part regulated via the control of active spike propagation. When B21 is peripherally activated at its resting membrane potential, spikes fail to propagate to an output process, and afferent transmission does not occur. In this report, we show that the propagation failure is in part a result of the fact that the somatic region of B21 is relatively inexcitable. We isolate this region and demonstrate that net currents evoked by depolarizing pulses are outward. Furthermore, we show that all-or-none spikes are not triggered when current is injected. Previous reports have, however shown that spiking is triggered when current is somatically injected and cells are intact. We demonstrate that spikes evoked under these circumstances do not originate in the soma. Instead they originate in an adjacent part of the neuron that is excitable (the medial process). In summary, we show that the mechanoafferent B21 consists of excitable input and output processes separated by a relatively inexcitable somatic region. A potential advantage of this arrangement is that somatic depolarization can be used to modify spike propagation from the input to the output processes without altering the encoding of peripherally generated activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRIEF REPORT A mechanoafferent neuron with an inexcitable somatic region: Consequences for the regulation of spike propagation and afferent transmission

In the Aplysia mechanoafferent B21, afferent transmission is in part regulated via the control of active spike propagation. When B21 is peripherally activated at its resting membrane potential, spikes fail to propagate to an output process, and afferent transmission does not occur. In this report we show that the propagation failure is in part a result of the fact that the somatic region of B21...

متن کامل

Regulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization.

Afferent transmission can be regulated (or gated) so that responses to peripheral stimuli are adjusted to make them appropriate for the ongoing phase of a motor program. Here, we characterize a gating mechanism that involves regulation of spike propagation in Aplysia mechanoafferent B21. B21 is striking in that afferent transmission to the motor neuron B8 does not occur when B21 is at resting m...

متن کامل

Frequency-dependent regulation of afferent transmission in the feeding circuitry of Aplysia.

During rhythmic behaviors, sensori-motor transmission is often regulated so that there are phasic changes in afferent input to follower neurons. We study this type of regulation in the feeding circuit of Aplysia. We characterize effects of the B4/5 interneurons on transmission from the mechanoafferent B21 to the radula closer motor neuron B8. In quiescent preparations, B4/5-induced postsynaptic...

متن کامل

Two distinct mechanisms mediate potentiating effects of depolarization on synaptic transmission.

Two distinct mechanisms mediate potentiating effects of depolarization on synaptic transmission. Recently there has been renewed interest in a type of plasticity in which a neuron's somatic membrane potential influences synaptic transmission. We study mechanisms that mediate this type of control at a synapse between a mechanoafferent, B21, and B8, a motor neuron that receives chemical synaptic ...

متن کامل

Inhibition of afferent transmission in the feeding circuitry of aplysia: persistence can be as important as size.

We are studying afferent transmission from a mechanoafferent, B21, to a follower, B8. During motor programs, afferent transmission is regulated so that it does not always occur. Afferent transmission is eliminated when spike propagation in B21 fails, i.e., when spike initiation is inhibited in one output region-B21's lateral process. Spike initiation in the lateral process is inhibited by the B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2007